Exponential Functions

An exponential function is any function of the form $f(x)=a^{x}$ (or any transformation of a function of this form, e.g., $f(x)=5 \cdot 3^{x-2}+4$). We say a is the base of the function.

1. First, let's address this, since it comes up from time to time. True or false: $3 \cdot 5^{x}=15^{x}$?
2. We typically restrict ourselves to only looking at exponential functions where the base a is $a>1$ or $0<a<1$. Why?
3. Let's figure out the general shape of the graph of exponential functions by graphing 2^{x}.
(a) Plug in some points:

x	-3	-2	-1	0	1	2	3	4	5	10
2^{x}										

(b) Now sketch a graph with those points. You might need to be careful with your labels.

(c) Compare this to the graph of x^{2} by sketching x^{2} it on the same axes.
(d) Describe the major differences between the two.
4. How does changing the base affect the graph of an exponential function? Compare 2^{x} and 3^{x}. What about $\frac{1_{2}^{x}}{}$? Or $\frac{1}{3} x$?

5. What is the domain of an exponential function of the form $f(x)=a^{x}$? What is the range?
6. Draw a rough sketch of the function $g(x)=2 \cdot 3^{-x}-5$. Make sure your y-intercept is in the right place.

